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Abstract. A simple unified procedure, based on a generalization of a method first used by 
Weinstein in 1934, yields effective lower and upper bounds to energy levels and overlap 
integrals of quantum-mechanical systems. A further generalization yields bounds to expecta- 
tion values. 

1. Introduction 

The search for effective error bounds to energy levels and other physical 'observables' 
of atomic and molecular systems remains one of the most challenging problems of non- 
relativistic quantum mechanics. Many procedures have been employed by different 
investigators over the past forty years, but the resulting formulae have usually been 
rather similar. It is therefore instructive to derive these formulae by means of a single 
unified procedure, one which not only demonstrates the relationships between them, but 
also indicates possible avenues of progress. 

In this paper, we present a generalization of the classical work of Weinstein (1934), 
which was originally used to provide lower bounds to energy levels. Our procedure leads 
not only to bounds to energy levels but also to overlap integrals and expectation values, 
which are required in many applications. We first give a fairly detailed resumk of the 
Weinstein procedure so as to emphasize both its generality and its limitations. 

We consider a general quantum system described by a non-relativistic hamiltonian H. 
The exact eigenfunctions {$"} (of particular symmetry) and eigenvalues { E , }  satisfy the 
Schrodinger equation 

H*n = 'n*n ; (1) 

(*nl$m) = 6 n m  (2) 

the eigenfunctions form a complete orthonormal set11 which satisfy 

and the eigenvalues are arranged in order so that 

En < En+ 1 (n = 0, 1,. . . ). (3) 
$ Permanent address: Department of Physical Chemistry, The Hebrew University, Jerusalem, Israel 
/I The eigenvalue spectrum of H is, in general, partly continuous with eigenfunctions { I / / E }  for all E > 0. Thus, 
the complete orthonormal set of eigenfunctions actually contains both {I//.} and { I j l E } .  It is only for simplicity 
of presentation that we use the notations I//a, E ,  and Z, for the entire spectrum. 
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A normalized approximate trial function 4i  which satisfies the appropriate physical 
boundary conditions may be expanded in terms of the exact eigenfunctions according to 

m 

Without loss of generality, we assume throughout this paper that the expansion co- 
efficients a,, are real and suppress all explicit reference to the continuum. We choose 
4i  normalized so that 

and, provided that the integrals exist, we may calculate successive moments of the 
hamiltonian li ,  Ji, K i ,  L,, etc, where 

m 

Ii .= (4iIHI4i> = a?nEn 
n = O  

m 

Ji = (q5iiHzl$i> = C 
n = O  

W 

K~ = (4,1~314,> = 1 a : n ~ :  
n = O  

m 

Li = (4iIH414i> = 1 a?nE,4, 
n = O  

etc. 

Clearly, as 4i approaches an exact eigenfunction $i,  

(7) ain + 0 (all n # i); aii + 1 

so that 

li + Ei, J i  + E; ,  K i  + E:, L, + E:, etc. (8) 

2. ResumC of the Weinstein procedure 

Weinstein (1934) considered the positive semi-definite quadratic function 

2) = ((H-A)4il(H-A)4i) (9a) 

= J i -2ZiA+AZ (9b) 
m 

= u;~(E , -A)~  
n = O  

where A is any real parameter for which the integrals exist. By introducing the normaliza- 
tion condition for 4,, he obtained the following identity valid for any particular energy 
level E j  of interest : 

Ai(A, A) 3 ( E j - A ) 2 +  1 U ~ ? , [ ( E , - A ) ~ - ( E ~ - A ) ~ ] .  
n # j  
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Now, provided only that the sum in equation (10) is non-negative, one obtains both 
lower and upper bounds to E,: 

E ,  5 i , +Af ’2 (2 ,  A). (11) 

It is clear that the residual sum in equation (10) will be non-negative if we can choose 1. 
so that each term in the sum is separately non-negative, so that 

IEj-AJ < JE,-I\ (12) 

for every n # j ;  this condition is sufficient, but not necessary. Various choices of 1. now 
lead to a number of different energy bounds. 

2.1. Weinstein’s bounds 

In his original work, Weinstein (1934) chose the parameter i, by minimizing the function 
Ai@, A), a procedure which brackets E ,  between symmetrically situated lower and upper 
bounds. His results are: 

2 = I i  (13) 

and 

E j  5 l i f A i ,  

where we have introduced the variance of 4i:  
A: = J i - I ?  2 0. (15) 

The bounds of inequality (14), though very simple in form, suffer from a serious draw- 
back which was actually emphasized in Weinstein’s (1934) paper. The problem is that 
more than one of the exact energy levels E ,  may satisfy the conditions for (14) to guar- 
antee bounds ; and even if there is only a single level in the range, it is not clear which 
level E,  is bounded, unless one knows a priori that the calculated I i  lies closer to one 
particular E, than to all the others. 

2.2. Bounds of Stevenson and Crawford 

Condition (12) is clearly satisfied if we choose 1 in the range 

p = $Ej - ,+Ej )  < A < $ E j + E j + l )  = v (16) 
where E j -  1, E,  and E,, are the exact energy levels. This choice yields the Stevenson and 
Crawford (1938) bounds to E j  : 

v-A:”(v, V) Q E j  Q , ~ + A / ’ ~ ( p , p ) ,  (17) 
but since the parameters p and v require knowledge of exact energy levels, these bounds 
are not completely satisfactory. 

2.3. Temple’s bounds 

If an approximate upper bound to E j -  , and an approximate lower bound to E,, are 
available, we satisfy condition (12) by choosing A in the restricted range 

(18) p“ = $ ( E y - , + E j )  Q i. < +(E,+E?+,)  = vL. 
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Substitution of these parameters in (17) leads (after some reduction) to  the Temple (1928) 
bounds to E j :  

Kat0 (1949) has shown that these are the best energy bounds obtainable, using the 
calculated moments I i  and .Ii and given the rough estimates EY- and E),  1 .  

2.4. Bounds of Colirn and Feldmann 

Returning to (9c), we see that for all A, 

Ai(A, i.) 2 a:n(En-A)2 (20) 
neg 

for any subset g of the complete set of exact eigenfunctions. In particular, if g contains 
only a single element 4j  then 

which 
(1 969) 

with 

AXA,I) 2 ~: , (Ej - i . ) ’  (21) 
leads (following optimization with respect to i.) to the Cohen and Feldmann 
bounds to E j :  

E j  >< I i f k i j A i  (22) 

The Cohen-Feldmann energy bounds, though free of the ambiguities associated with 
Weinstein’s bounds, require an independent means of estimating the overlap integra1 
u:j in order to  be quantitatively useful. On the other hand, the result may be written 
alternatively as an upper bound to  the overlap 

a$ < A?/Ai (E j ,  E j )  

whenever the energy E j  is known independently (perhaps from experiment). More com- 
plicated bounds to individual overlaps, and bounds to particular sums of overlaps are 
easily obtained by including additional members of the subset g in the partial sum of 
inequality (20) (Cohen and Feldmann 1970a,b). 

3. Generalization of the Weinstein procedure 

We now consider the positive semi-definite quadratic function 

W(A, 2;  F )  = ( (H-A)4tFl(H-A)4)  2 0 

in which F is any positive semi-definite operator (which may or may not commute with 
the hamiltonian H). We note first that the particular choice 

4 = 4 i 2  F = 1 - c I $ X $ n l  (26) 
n Eg 

leads directly to inequality (20), but our definition of W(A, 1; F )  allows the possibility of 
making a more general choice of F,  thus leading to new results. 
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3.1. Gordon’s bounds 

In (25), if we choose 

4 = 4 0 9  F = ( H  - Eo) ,  (29) 

where 4o is an approximation to the ground state eigenfunction Go, we obtain the in- 
equality, valid for all i: 

Bo@, 4- E,A,(A, 4 2 0. (30) 

(31) 

Optimization with respect to 3. now leads to Gordon’s (1968) upper bound to E,: 

- Eo) (E ,  - 2 ) 2  2 0. (33) 
Optimization with respect to i leads in this case to Gordon’s (1968) lower bound to a i ,  : 

E ,  Q 51, - A y ( H , ,  U,). 

The alternative choice 

4 = 4 0 ,  F = ( H - E ,  

leads to the inequality : 

&(A, 2 )  - E,A,(%, A) +a;,@ 

The first term on the right-hand side is simply Eckart’s (1930) lower bound to ago. 
The complementary upper bound to a&, is obtained by choosing 

4 = 409 F = (H-Eo)(l-I$n)<$nl) (35) 
which leads to (cf Cohen and Feldmann 1971): 

3.2. Excited states 

For the nth excited state, we choose 
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and obtain 

To proceed, we require rather precise knowledge of all the lower Ek(O < k < n- 1) so 
as to determine suitable upper bounds to  the overlaps aik.  Denoting these upper bounds 
by i i i k ,  optimization of (38) leads to  the analogue of (3 1) : 

E,, < E , - ~ ~ i 2 ( i i , ,  E,,) (39) 
where 

and 

We thus obtain a simple bound to  E ,  only if 4, is strictly orthogonal to  all the lower Gk,  
so that all czik are zero. The excited state analogues of (34) and (36) suffer from the same 
drawback, and are probably not useful in practice. 

An alternative choice avoids the difficulties associated with overlaps to lower-lying 
eigenfunctions $ k ,  by introducing a higher (fourth) moment. Thus, with 

(42) 

(43) 

(44) 

4 = 4m 

En < I n  < En+ 1 

c,(A 2) - (E,, + I,,P,,(A A) + E,,I,A,,(A 2) 2 0. 

F = (H - E,,)(H - I,) 

where it is assumed that 

(so that F is positive as required), we obtain from (25) 

Optimization now leads to  the bounds to E,: 

E,, 5 a,? [A,(@,, a,) + a,'] l i 2 .  (45) 

4 = 4 n 7  F = (H-I f l ) (H-E,+J (46) 

But since the alternative choice 

leads to identical bounds to E, ,  : 

En+ 1 S an * [An(an, an) + S i 1  1/2 (47) 
we conclude that this procedure yields only a useful lower bound to E ,  and an upper 
bound to  E , ,  1 .  Thus, for the special case n = 0, we have the combined result (from (45) 
and (31) together) 

ao-[Ao(ao ,  a0)+6;]l i2  < E ,  < a,-Ahi2(ao, ao) 

~ , - [ A , ( a , ,  an)+6 i ] l i 2  < E,, < I,. 

(48) 
giving tight bounds whenever 6; is sufficiently small, while for excited states, we have 

(49) 

The lower bounds of (48) and (49) have not been given previously. 
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3.3. Bounds to the resolvent operator 

The resolvent operator 

W O )  = ( H  - Eo)- '(1 - l+o)($ol) 

Si = ($ilR(EO)l4i> 2 0.  

(50) 

is positive semi-definite so that 

(51) 
Similarly, the operator ( H  - E l ) R ( E o )  is positive semi-definite so that 

2 1 - a i o  Si < - 
E ,  -E0 

A more precise lower bound to  Si  is obtained either via the Cauchy-Schwarz inequality, 
or from (25)  using 

4 = 4i, F = R ( E o ) .  (53) 
The result is 

(1 - aj6)2 
2 0, si ' l i - E o  (54) 

and in the case i = 0, (54) combined with (52) leads to Eckart's lower bound to a io ,  
given by the first term on the right-hand side of (34). 

3.4. Bounds of Weinhold and Wang to expectation values 

A very slight modification of our general procedures will yield bounds to expectation 
values, such as those of Weinhold (1968) and Wang (1969). For the positive definite 
operator L, we construct the functional 

V(X, 2 ; F )  = ( ( L  - I)4IFI(L - 214) 2 0 ( 5 5 )  

4 = 4 0 ,  F = 1 - l $ o ~ ~ + o l  (56) 

(1 - a;,)22 - 2(( L )  - ao0L)A + (( LZ) - C2) 2 0 (57) 

( L )  = (40lLl40>, L = (4olLl+o>, ( L 2 >  = (401L2190>. ( 5 8 )  

(59) L >< aoo(L)+(1 -aoo)  (W 

(AL.)' = (L*)-(L>'.  (60) 

<Il/oILl$'o> 2 [ a o o ( L )  -&)"2AL]2/(L> (61) 

where F is a positive semi-definite operator, as in (25). Then, with the simple choice 

we obtain the inequality 

where we have used the notations 

Optimization with respect to 2 immediately yields Weinhold's bounds to L : 
2 l / Z  

where we have written 

Weinhold's (1968) lower bound for positive operators L : 

now follows from (59) on use of the Cauchy-Schwartz inequality. Weinhold has shown 
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that the bound (61) is uniformly superior to the rigorous lower bound of Bazley and 
Fox (1966) and usually improves the approximate bound of Jennings and Wilson (1967). 

Finally, the choice 

4 = 4 0 9  

leads to Wang’s (1969) more complicated lower bounds. 

4. Conclusions 

It is clear from all these examples that the Weinstein procedure, suitably generalized, is 
capable of producing many of the known bounds formulae for energies, overlap integrals 
and expectation values, as well as new results. It is not claimed that this procedure 
yields all the known results naturally, and we have given one example (cf 9 3.3 above) 
of the Eckart tower bound to uio which is obtained more easily by other means. How- 
ever, we have shown how the Eckart lower bound may be deduced using the Weinstein 
procedure, and it seems likely that the overlap bounds of Weinberger (1960), Rayner 
(1962) and Delves (1964) can be deduced similarly. 

We have not investigated the error associated with individual bounds formulae. 
Ideally, both lower and upper bounds should be computed and the difference between 
them minimized in order to obtain reliable estimates of physical observables. For 
expectation values, the most hopeful results appear to be those of Mazziotti (1971), whose 
lower bound formula yields results only slightly poorer than Weinhold’s lower bound. 
Mazziotti’s procedure yields an upper bound as well as a lower bound, and has the 
additional advantage of involving only first moments of H and L. 

The principal disadvantage of the Weinstein procedure is the need to compute 
higher moments of H and L, and it is well known that the necessary integrals frequently 
diverge. Similar difficulties apply to  most of the bounds procedures in the literature and 
are not confined to the Weinstein procedure. Any future progress will depend on 
developing efficient means of calculating these higher moments with variational wave- 
functions. 
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